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Abstract. Photo-detached electrons of negative hydrogen ion in parallel electric and magnetic fields show
quite complicated classical dynamical behavior, and a sequence of bifurcation and anti-bifurcation occurs.
We investigate the effects of bifurcations on the flux distribution of photo-detached electrons by using
position and momentum diagrams. Detached-electron flux distributions are calculated based on a uniform
semi-classical theory. The flux distributions exhibit patterns with multiple rings. The bright rings corre-
spond to special points in the diagrams. The flux distributions can be controlled by adjusting the magnetic
field strength while fixing the electric field.

PACS. 32.80.Fb Photoionization of atoms and ions – 03.65.Sq Semiclassical theories and applications

1 Introduction

With the development of photodetachment microscope
technology it is possible to observe the spatial distribu-
tions of detached-electron on a screen. The spatial dis-
tributions provide information about the negative ion
wave function before detachment. Blondel’s group com-
pleted the first such experiment for Br− ions in a homo-
geneous electric field [1]. Inspired by this pioneer work,
studies have been extended to other ions, atoms and
molecules [2–5]. Since the detached-electron flux distri-
bution is sensitive to parameters such as photon energy,
the binding energy of negative ion and the strengths of
external fields, it has been used to obtain binding energies
of negative ions with high precision [5].

Theoretical investigations on the photodetachment mi-
croscope of negative ions in a static electric field were de-
scribed using semi-classical and other methods [6,7]. The
photo-detached electron distribution on a screen perpen-
dicular to the field shows a concentric structure result-
ing from the interference of two distinctive electron paths.
Oscillations in the total photodetachment cross section in
parallel electric field and magnetic fields have been pre-
dicted more than ten years ago, but the experiment was
carried out recently [8]. However, measurements on spa-
tial distributions of detached-electrons in parallel electric
and magnetic fields using photodetachment microscope
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are still not yet available. Recently several interesting ar-
ticles have appeared addressing the theoretical questions
of detached-electron distribution in parallel fields [9–12].
A point source was used to simulate the initial detached-
electron in all these works. Usually an isotropic point like
source was used [9–11]. The results using such a source
should be useful for photo-detachment from a negative ion
in a p-wave state very near detachment threshold where
the d component of the detached electron can be neglected
compared to the s component. However, the results can-
not be directly applied to the photo-detachment of H− in
parallel electric and magnetic fields because H− is in an
s-wave state and the detached-electron is a p-wave. The
initial detached outgoing wave is important in determin-
ing the images on the screen. A point like multipole source
was introduced and applied only to study the p-wave pho-
todetachment in an electric field [12].

This article is about the photodetachment of H− in
parallel electric and magnetic fields. We take the specific
initial wavefunction of H− into consideration and describe
the resulting angular dependent detached-electron wave-
function (a p-wave). We pay particular attention to the
ring patterns in the flux distributions on the screen, and
we show these patterns can be modified by external fields.
A semiclassical method is used since it gives quite intuitive
physical pictures. The method is easy to apply numer-
ically. A different method based on catastrophic theory
was used to deal with singularities in references [9–11].
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Semiclassical theory has achieved great success in
studying photo-absorption properties of atom, negative
ion and molecule in applied strong external fields since it
was proposed [13–16]. The divergence in the wave function
associated with the bifurcation of classical orbit [17–19]
can be fixed by using a mixed position and momentum
representation of semiclassical wave function [20]. We will
calculate the detached-electron flux distribution images on
the screen using the mixed position and momentum rep-
resentation for the detached-electron. We will show the
major features of the detached-electron images are rings,
which can be controlled by adjusting the magnetic field.
What makes the current system more interesting is that
the classical orbits of the photo-detached electrons bifur-
cate with the external parameters such as the photon en-
ergy and the magnetic field strength. The relationship be-
tween the ring patterns in the detached-electron images
and the bifurcation of classical orbits is discussed using
ρ− pρ diagrams.

This paper is organized as follows. In Section 2, we de-
scribe the system, the electron’s classical motion and the
bifurcation of classical orbits using ρ − pρ diagrams. In
Section 3, a uniform semiclassical method in a mixed po-
sition and momentum representation is described and used
to propagate the detached-electron wave function from the
negative ion to the screen perpendicular to the fields. We
then calculate and display the images of detached-electron
flux distributions on the screen. We also discuss the cor-
respondence between the structures in the images and the
bifurcation or anti-bifurcation. A short conclusion is given
in Section 4. Atomic units are used throughout unless oth-
erwise noted.

2 Classical motion and bifurcation

To investigate the flux of photo-detached electrons of H−
in parallel electric and magnetic fields in semiclassical
framework, we have to find all emanating trajectories of
the active electron from the atomic core. Take the direc-
tion of the electric and magnetic fields as the z-axis and
use the cylindrical coordinates (ρ, z, φ). A Hydrogen neg-
ative ion H− sits at the origin and a z-polarized laser
is applied. H− can be regarded as a one-electron system
with an active electron loosely bound by a short-range
spherical symmetric potential. In cylindrical coordinates
(ρ, z, φ), the Hamiltonian governing the electron motion
after photodetachment is [17]

H =
1
2
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ρ +
L2

z

ρ2

)
+ωlLz+

1
2
ω2

l ρ
2+
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2
p2

z+Fz+Vp(r) (1)

where ωl is the Larmor frequency, ωl = B/2c, F and B
are the electric and magnetic field strengths, respectively,
Vp(r) is a short-range potential, where r is the distance
between the active electron and the nucleus [21], and Lz

is the z-component of the angular momentum, which is
a constant of motion. It is a good approximation to ne-
glect Vp(r).

The electron motion can be separated into two parts:
the motion along the z-axis is a uniform acceleration, and
the motion in the x−y plane is a circular cyclotron motion.
Take the angle of the initial outgoing direction and the
z-axis to be θ0, the trajectory of the detached-electron in
cylindrical coordinates is given by

{
ρ = k sin θ0 |sin(ωlt)| /ωl

z = −t2F/2 + kt cos θ0
(2)

and the corresponding momentum is
{
pρ = k sin θ0 cos(ωlt)
pz = −Ft+ k cos θ0

. (3)

The time tf for a detached-electron to reach the screen
perpendicular to the z-axis at z < 0 is

tf =
(
k cos θ0 +

√
k2 cos2 θ0 − 2Fz

)
/F. (4)

The maximum and the minimum of tf are

tmax =
(
k +

√
k2 − 2Fz

)
/F, (5)

tmin =
(√

k2 − 2Fz − k
)
/F. (6)

They correspond to the initial angle θ0 = 0 and π.
The ρ motion is the same as the cyclotron motion in

the magnetic field. The cyclotron period is

tc = π/ωl. (7)

When tf = ntc (n is a positive integer), the detached-
electron collides with the z-axis.

The behaviors of the detached-electron in coordinate
space are rather complicated [9–11,17]. Here we analyze
the detached-electron dynamics using ρ− pρ diagram. By
substituting time in equation (4) into ρ in equation (2)
and pρ in equation (3), the curve parameterized by an-
gle θ0 from 0 to π is the ρ−pρ diagram. A ρ−pρ diagram
is in a way similar to a surface of section. The diagram will
be useful in understanding the structures in the detached-
electron images on the screen. In the following calcula-
tions, the energy of the electron is 0.01 a.u., the electric
field is 100 V/cm, and the screen is at z = −5 × 106 a.u.
The ρ− pρ diagrams at various magnetic fields are drawn
in Figure 1. For clarity the value of ρ can be negative. The
solid lines stand for the orbits with initial angle θ0 ≤ π/2,
and the dash lines stand for the orbits with θ0 > π/2. The
solid lines and the dash lines join smoothly. In Figure 1a,
the magnetic field is very small, the ρ− pρ diagram is al-
most identical to the one with only an electric field [7].
ρc is a boundary, it divides the whole range for ρ into
a classically allowed region and a classically forbidden re-
gion. For every ρ in (0, ρC), there are two pρ, consequently
there are also two orbits reaching the same point ρ on the
screen; for ρ larger than ρC , there are no classical orbits.

As the magnetic field is increased, the cyclotron period
decreases. Figures 1b−1j are ρ−pρ diagrams with increas-
ing magnetic field. In Figure 1b, when the magnetic field
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Fig. 1. The ρ − pρ diagrams of
detached-electron calculated on a
screen at z = −5× 106 a.u. for various
magnetic fields. The detached-electron
energy E = 0.27 eV and the electric
field F = 100 V/cm. The solid lines
are for the orbits with initial angle
θ0 ≤ π/2, and the dash lines are for
θ0 > π/2. ρ is extended to negative in
the diagrams for clarity. The number
of intersection points between a ρ− pρ

curve and a line defined by |ρ| = con-
stant gives the number of orbits arriv-
ing at the same point ρ on the screen.
Ci are the boundary points. The thin
lines in (b) and (d) correspond to mag-
netic field B = Bb and 2Bb, respec-
tively. In (f) B = 4Bb, in (h) B = 7Bb,
and in (j) B = 4Bd.
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is 0.04750 T, the flight time of the orbit along the z-axis is
equal to the cyclotron period, tmax = tc, then the tangent
of the solid line at O coincides with the pρ-axis as shown
by the thin curve in Figure 1b. If the magnetic field is in-
creased slightly, the solid line will move across the pρ-axis
as shown by the thick curve in Figure 1b for a magnetic
field 0.05938 T. Fold caustics are formed near the special
boundary points C1 and C2 for the thick curve in Fig-
ure 1b. For any point satisfying 0 < |ρ| < |ρC2|, there are
four values of pρ corresponding to the same ρ. There are
also four detached-electron orbits reaching the same point
on the screen in this range. For |ρC2| < |ρ| < |ρC1|, there
are two values for pρ corresponding to the same ρ, there
are two detached electron orbits reaching the same point
on the screen in this range. Figure 1b shows a bifurcation
when the magnetic field is increased just above 0.04750 T,
then ρC2 increases from zero to a small but finite value and
the number of orbits increases by two. We call the mag-
netic field corresponding to tmax = tc the first bifurcation
magnetic field Bb. Combining equations (5) and (7) gives

Bb = (2πcF )/
(
k +

√
k2 − 2Fz

)
. (8)

Bb is equal to 0.04750 T in our case.
Figure 1c shows the disappearance of two orbits as the

magnetic field is increased from below Bd to above Bd. Bd

is calculated by setting tmin = tc and is given by

Bd = (2πcF )/
(√

k2 − 2Fz − k
)
. (9)

When B is close to but smaller than Bd, the ρ−pρ diagram
is similar to the thick line in Figure 1b except ρC1 is small.
In this case, there are four orbits for small ρ but two orbits
for larger ρ. When B = Bd, the tangent of dash lines
at O coincides with pρ-axis as shown in Figure 1c, the
entire curve is below the pρ-axis. Now only two orbits can
reach the same point on the screen in the whole classically
allowed region. Two orbits have disappeared near z-axis as
the magnetic field is increased from below Bd to above Bd.
We call the magnetic field Bd the first anti-bifurcation
magnetic field. Its value is 0.08927 T in our system.

As the magnetic field is increased further above Bd,
the number of orbits remains two until the magnetic field
is twice of Bb, or B = 0.09500 T, then the tangent of the
solid line of the diagram at O coincides with pρ-axis again
as shown by the thin line in Figure 1d. If the magnetic field
is increased slightly above 0.09500 T, part of the curve
will be above the pρ-axis, the number of orbits will be
four in the small ρ region. New orbits are created again.
Similar phenomena happen for larger magnetic field. For
example, Figures 1f and 1g show the diagrams at B = 4Bb

and above it; Figures 1h and 1i show the diagrams at
B = 7Bb and above it; Figure 1j shows the diagram at
B = 4Bd. When the magnetic field is n times of Bb, we
have tmax = ntc, two new orbits will come into play near
z-axis. When B is slight above mBd, we have tmin = mtc,
two orbits will disappear. Therefore, for a given magnetic
field B, the largest number of orbits reaching the same
point of the screen can be determined using

Nmax = 2 + 2(m∗ − n∗) (10)

where m∗ and n∗ are integers (m∗, n∗ = 0, 1, 2, ...) and
determined from m∗Bb < B < (m∗ + 1)Bb and n∗Bd <
B < (n∗ + 1)Bd.

3 Detached-electron wavefunction
and electronic flux distributions

For a photodetachment microscope, a screen away from
the negative ion is used to detect the detached-electron
flux. Assuming the screen perpendicular to the z-axis in-
tersecting the axis at z < 0. The electron flux distribution
on this screen can be calculated using [6,7]:

d2σ(ρ, z, ϕ)
ρdρdϕ

= −2π(Eb + E)
c

j · k (11)

where

j =
i

2
(
ψf∇ψ∗

f − ψ∗
f∇ψf

)
, (12)

ψf is the detached-electron wavefunction satisfying an in-
homogeneous equation, and k is a unit vector normal to
the screen. We calculate the wavefunction by using semi-
classical method. Imagine a sphere with radius r0 (5a0 ≤
r0 ≤ 100a0) enclosing the hydrogen negative ion which
divides the space into two regions. Inside the sphere, the
external fields can be neglected, and outside the sphere,
the short range potential can be neglected. Because the
initial state of H− is an s-state, when a laser polarized in
the z-direction is applied, a p-wave detached-electron is
produced due to selection rules. The non-isotropic outgo-
ing wave function is given by [6]

ψout(r) = ψout(ρ, z) = U(k)
keikr

r
cos θ (13)

where U(k) = −4iB0/(k2
b + k2)2 and Eb = k2

b/2 is
the binding energy. This outgoing wave is continued
with semi-classical method from the surface of the small
sphere to large r, which is described by classical trajecto-
ries [13,14],

ψf (r) =
n∑

j=1

ψout (r0)Aj (r) exp [i (Sj (r) − µjπ/2)] (14)

n counts the number of the trajectories that arrive at the
final point. Aj(r) is the amplitude, it represents the diver-
gence of adjacent trajectories in time. Sj(r) is the classical
action of the jth orbit, and µj is the Maslov index.

The wavefunction in equation (14) diverges at singular
points. A uniform approximation can be obtained by us-
ing mixed position and momentum representation [7,20].
Since the present system has cylindrical symmetry, the
dynamics is reduced to a two-dimensional system. The
orbits can be described in a 4-dimensional phase space
using coordinates (pρ, pz, ρ, z). It is convenient to use the
mixed position and momentum variables (pρ, z) for this
problem [7].
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The initial outgoing wave function in the mixed posi-
tion and momentum variables is obtained from the Fourier
transform

ψ̃out(pρ, z) = (2πi)−1/2

∫
ψout(ρ, z) exp(−iρpρ)dρ. (15)

The integral can be carried out using stationary-phase ap-
proximation. Let Φ = 
k · 
r − ρpρ, the stationary point
satisfies ∂Φ/∂ρ = 0. The result of the integral is

ψ̃out(pρ, z) = U(k)
√
k

r0
exp(ikzz0). (16)

As in the configuration space, the wavefunction in (pρ, z)
space can be propagated

ψ̃(pρ, z)=
n∑

i=1

ψ̃i
out(pρ, z)Ãi(pρ, z) exp i

[
S̃i(pρ, z)−π

2
νi

]
.

(17)
The summation runs over all trajectories which arrive at
the same point (pρ, z), and Ãj is the corresponding am-
plitude [7]

Ã =

√
ρ(t = 0)
ρ(t)

√
J̃(t = 0, θ)
J̃(t, θ)

(18)

J̃(t, θ) =
∂(pρ, z)
∂(t, θ)

. (19)

The classical action in the mixed position and momentum
variables (pρ, z) will be denoted by S̃(pρ, z) =

∫
pzdz −∫

ρd pρ. It is related to the action in coordinate space
S(ρ, z) by

S̃(pρ, z) = S(ρ, z) − ρpρ. (20)

The uniform approximation for the detached-electron
wave function on the screen is obtained from

ψf (ρ, z) =
i

2π

∫ n∑
i=1

ψ̃i
out(pρ, z)Ãi(pρ, z)

× exp i
[
S̃i(pρ, z) − π

2
νi + pρρ

]
dpρ. (21)

Away from singular points, the above integral can be car-
ried out using stationary-phase approximation, and the
result is the same as the one obtained via direct propaga-
tion in coordinate space. The phase of equation (21) is

Φi = pρρ+ S̃i(pρ, z)− νiπ/2. (22)

The stationary-phase points are determined by ∂Φi/∂pρ =
ρ − ρi(pρ, z) = 0 and ∂2Φi/∂p

2
ρ �= 0. ρi(pρ, z) are the in-

tersection points of the diagrams in Figure 1 with straight
horizontal lines. When ρi(pρ, z) are well separated from
the extreme point such as ρC2, the stationary-phase ap-
proximation for the integral in equation (21) can be used.
Near singular points, we expand the phase part in equa-
tion (21) to the third order and use the Airy approx-
imation as done before when only an electric field is

present [7]. Define A(ρ, z) = ψ̃i
out(pρ, z)Ãi(pρ, z), and

B(z) = (−∂3Φi/∂p
3
ρ)

1/3
∣∣
pρ = pci

ρ

, the wavefunction in co-

ordinate space is

ψf (ρ, z) = 2π1/2A(ρ, z)B(z)Ai [−B(z)(ρ− ρci)]

× exp
[
i
(
Φ(z, pci

ρ ) − π

4

)]
. (23)

We now calculate the detached-electron wavefunctions
and the detached-electron flux distributions on the screen
using the method described above. We will increase the
magnetic field while keeping the electron’s energy and the
electric field fixed. We take the same parameters as in
Figure 1. The results for the detached-electron flux dis-
tributions as a function of ρ are shown in Figure 2. Be-
cause it is classically forbidden for large ρ, the electron
flux vanishes there. As ρ is decreased, the flux distribu-
tions become more oscillatory. The flux distributions are
divided into intervals by the special points in the diagrams
in Figure 1 such as C, C1 and C2. For example, when
the magnetic field B = Bb as in Figure 2a, the flux is
an interference of two orbits. The point C in Figure 2a
is the point C in Figure 1b. When the magnetic field is
0.05938 T corresponding to the thick line in Figure 1b,
|ρC1| = 6.29 × 105 a.u. and |ρC2| = 3.52 × 105 a.u., four
orbits interfere in the region ρ < |ρC2|. When ρ is ex-
actly at |ρC2|, two of the orbits degenerate into one, there
are three orbits. Only two orbits interfere in the region
|ρC2| < ρ < |ρC1|. When ρ is equal to |ρC1|, the remain-
ing two orbits degenerate into one orbit. ρ > |ρC1| is the
classical forbidden region, there is no orbit. The details of
interference near C2 are shown in the inserts. When the
magnetic field is increased to B = 0.08927 T, the structure
in the ρ−pρ diagram is simple again, the special points C1

and C2 no longer exist, there are only two orbits in the
classical allowed region ρ < |ρC |, the corresponding flux
distribution is shown in Figure 2c, which is quite similar to
Figure 2a where the magnetic field can be neglected. The
correspondence between the ρ − pρ diagrams in Figure 1
and the detached-electron flux distributions in Figure 2
can be discussed similarly for larger magnetic field cases.
For example, when B = 0.21113 T, there are three special
points C1, C2 and C3 in Figure 1g, these three points are
identified in the corresponding flux distribution shown in
Figure 2e. When B = 0.35710 T, the four special points in
Figure 1j have important impacts in the detached-electron
flux distribution in Figure 2f. In all cases, we found the
ρ − pρ diagrams are useful to understand the detached-
electron flux distributions.

In Figure 3, we show the electron flux distribution close
to C2 labeled by an arrow in Figure 2b. The thin line
stands for the flux distribution calculated using the semi-
classical wavefunction in coordinate space. It diverges as
expected. The thick line is the uniform result obtained us-
ing the mixed position and momentum variables (pρ, z).
As ρ decreases across the boundary point C2, the orbits
reaching the screen increase from 2 to 4. The two new
orbits coalesce at C2. We found the wave amplitudes as-
sociated with the two new orbits are larger. The broad
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Fig. 2. Detached-electron flux
distributions as a function of ρ
at different magnetic fields.
Detached-electron energy E =
0.27 eV, static electric field F =
100 V/cm, and the screen is at
z = −5 × 106 a.u. The inserts
show the details of the interfer-
ence. The points C, C1 and C2

are the special points in the
ρ − pρ diagrams in Figure 1.

Fig. 3. Detached-electron flux distribution near C2 calculated
using a uniform semi-classical wavefunction (thick line) and a
primitive semi-classical wavefunction (thin line).

fringes with almost 100% contrast come from the inter-
ference of the waves associated with the two new orbits,
while the narrow fringes with a lower contrast are due to
the two orbits existing on both the left and right of C2.

In Figure 4 we show the detached-electron images
corresponding to magnetic field B equal to 0.04750 T,
0.05938 T, 0.21113 T and 0.35710 T, respectively. Color
bright corresponds to high intensity. Because the system
has cylindrical symmetry, the major feature in the im-
ages is the rings. We observe the bright rings are associ-
ated with the special points such as C1 and C2, the in-
terference produces some of the weak rings. In all cases,
the intensity is high near z-axis because of the magnetic
field. When the images in Figure 4 are compared with the
detached-electron images of negative ions in an electric
field only [1–4,6,7], we find the images in parallel electric
and magnetic fields are more complex and interesting.
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Fig. 4. Detached-electron images
on a screen for H− in parallel elec-
tric and magnetic fields. Detached-
electron energy, electric field and
the position of the screen are the
same as in Figure 2 the magnetic
field is given in each image.

When comparing the photodetachment of H− and the
results using a point like isotropic source [9–11], we find
the detached-electron by a point like source is isotropic,
but the angular dependence for detached-electron of H− is
given by equation (13). The angular dependent wavefunc-
tion appears as the initial outgoing wave on the surface
of the sphere in the semi-classical method described in
Section 3. The detached-electron wave amplitude reach-
ing the screen along each orbit is determined by value
of the outgoing wavefunction at the emission angle and
the amplitude Ã measuring the wave spreading along the
orbit. The angular dependence of the detached-electron
leads to more concentration of electron near z-axis and is
important in determining the images on the screen.

4 Conclusion

We have studied the spatial distributions of detached-
electron in the photodetachment of H− in parallel elec-
tric and magnetic fields taking the existing model for H−
into consideration. We described the bifurcation and anti-
bifurcation of detached-electron orbits using ρ − pρ di-
agrams. We obtained uniform semi-classical wave func-
tions for the detached-electron using a mixed position and
momentum space method and calculated the flux distri-
butions on a screen. The mixed-space approach makes it
more transparent to connect the detached-electron orbits
reaching the screen and the structures in the images of
detached-electron flux. We found the detached-electron
images on the screen consist of strong and weak rings.
The strong rings correspond to the special points in the
ρ− pρ diagrams where bifurcation and anti-bifurcation of
orbits occur, and the weak rings correspond to fringes and

are consequences of interference of detached-electron trav-
eling along different orbits from the negative ion to the
screen. We have shown the interference produces broad
fringes with high contrast and narrow fringes with low
contrast as in Figure 3. The ring patterns in the detached-
electron images can be modified by adjusting the magnetic
field strength. The observations of these images will pro-
vide direct evidence for bifurcation and anti-bifurcation of
detached-electron orbits in parallel electric and magnetic
fields.

A paper published very recently by Bracher, Kramer
and Delos [10] studied the electron dynamics in parallel
electric and magnetic fields. The photodetached-electron
was model by an isotropic point source. An isotropic
source does not give the correct angular dependence of
detached-electron and the detached-electron images on the
screen for H−. However, the study by Bracher, Kramer
and Delos [10] using coordinate space should provide sim-
ilar information regarding the bifurcations of orbits as our
method using ρ− pρ diagrams, although the perspectives
of the two approaches are different.

This research has been supported by NSFC Grant
No. 10374061 and No. 90403028. We thank the referee
for some useful suggestions.
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Delsart, J. Chem. Phys. 122, 014308 (2005); C. Blondel,
W. Chaibi, C. Delsart, C. Drag, F. Goldfarb, S. Kröger,
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